Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect.

نویسندگان

  • Emma A Webb
  • Meena Balasubramanian
  • Nadja Fratzl-Zelman
  • Wayne A Cabral
  • Hannah Titheradge
  • Atif Alsaedi
  • Vrinda Saraff
  • Julie Vogt
  • Trevor Cole
  • Susan Stewart
  • Nicola J Crabtree
  • Brandi M Sargent
  • Sonja Gamsjaeger
  • Eleftherios P Paschalis
  • Paul Roschger
  • Klaus Klaushofer
  • Nick J Shaw
  • Joan C Marini
  • Wolfgang Högler
چکیده

Context Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting Natural history study in pediatric research centers. Patients Eight patients with type XIV OI. Main Outcome Measures Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecula...

متن کامل

Next-Generation Sequencing Reveals One Novel Missense Mutation in COL1A2 Gene in an Iranian Family with Osteogenesis imperfecta

Background: Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disorder characterized by bone loss and bone fragility. The aim of this study was to investigate the variants of three genes involved in the pathogenesis of OI. Methods: Molecular genetic analyses were performed for COL1A1, COL1A2, and CRTAP genes in an Iranian family with OI. The DNA samples were analyzed by...

متن کامل

Novel Deletion of SERPINF1 Causes Autosomal Recessive Osteogenesis Imperfecta Type VI in Two Brazilian Families.

Autosomal recessive osteogenesis imperfecta (OI) accounts for 10% of all OI cases, and, currently, mutations in 10 genes (CRTAP, LEPRE1, PPIB, SERPINH1, FKBP10, SERPINF1, SP7, BMP1, TMEM38B, and WNT1) are known to be responsible for this form of the disease. PEDF is a secreted glycoprotein of the serpin superfamily that maintains bone homeostasis and regulates osteoid mineralization, and it is ...

متن کامل

Molecular spectrum and differential diagnosis in patients referred with sporadic or autosomal recessive osteogenesis imperfecta

BACKGROUND Osteogenesis imperfecta (OI) is a heterogeneous bone disorder characterized by recurrent fractures. Although most cases of OI have heterozygous mutations in COL1A1 or COL1A2 and show autosomal dominant inheritance, during the last years there has been an explosion in the number of genes responsible for both recessive and dominant forms of this condition. Herein, we have analyzed a co...

متن کامل

Mutations linked to the pro alpha 2(I) collagen gene are responsible for several cases of osteogenesis imperfecta type I.

We have analysed six South African families with osteogenesis imperfecta type I using three DNA polymorphisms associated with the pro alpha 2(I) collagen gene. In four of these families linkage of the pro alpha 2(I) gene and the osteogenesis imperfecta phenotype was suggested, whereas in the remaining two families there was a lack of linkage. No distinct correlation could be made between the ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2017